All
Projects
Products
Events
Competitions
  1. ArchDaily
  2. Projects
  3. Research Center
  4. Canada
  5. PUBLIC Architecture + Communication
  6. 2017
  7. UBC Quantum Matter Institute / PUBLIC Architecture + Communication

UBC Quantum Matter Institute / PUBLIC Architecture + Communication

  • 19:00 - 19 September, 2018
  • Curated by Fernanda Castro
UBC Quantum Matter Institute / PUBLIC Architecture + Communication
UBC Quantum Matter Institute / PUBLIC Architecture + Communication  , © Martin Tessler
© Martin Tessler

© Martin Tessler © Martin Tessler © Martin Tessler © Martin Tessler + 14

  • Mechanical engineer

    Integral Group
  • Structural engineer

    Dialog
  • Electrical engineer

    MMM Group Limited
  • Geotechnical consultant

    Geopacific Consultants Ltd
  • Code consultant

    GHL Consultants Ltd.
  • Laboratory consultant

    Argo Architecture Inc.
  • Acoustic consultant

    RWDI
  • More Specs Less Specs
© Martin Tessler
© Martin Tessler

Text description provided by the architects. The Quantum Matter Institute houses an interdisciplinary group of researchers that study things at the atomic scale. Situated in the Applied Science Precinct of the University of British Columbia (UBC) campus, this slender corner addition is both a gateway and a connector. The QMI creates a new portal to the precinct, serves as a new formal entrance to the Advanced Materials and Process Engineering Laboratory (AMPEL) and collocates quantum researchers for the first time, creating the potential for research synergies in this ground-breaking field. Just as silicone was the basis of a microelectronics revolution, quantum research could lead to new industries in fields such as electronics, solar energy, and medicine.

© Martin Tessler
© Martin Tessler

The QMI creates its own identity while enhancing the integrity of its neighbors. The white brick cladding mixed with black and grey relates to the campus palette while revealing the chemical compound of the crystal lattices that form the foundation for the majority of QMI’s research. The corners of the building have been chamfered as required for site constraints and reveal a crystal structure of corbelled masonry. As if affected by a giant magnet, all of the bricks align from north to south.

© Martin Tessler
© Martin Tessler

Quantum research is best carried out underground because vibrations from sources as insignificant as a footstep can ruin an experiment. QMI has four underground vaults and a series of above-ground laboratories that provide a high degree of control over the environment. To ensure the vibration performance of these predictable spaces, the entire building is decoupled from its site with isolation pads and absorptive membranes below grade and the laboratories are stacked in a reinforced concrete structure designed to be as stiff as possible. The laboratories are designed to support long-term flexibility, acting as re-configurable stages upon which new research activities can unfold. 

© Martin Tessler
© Martin Tessler

While quantum experiments flourish in vacuum chambers, the growth of quantum ideas does not. Integration between researchers is essential for new discoveries. Taking inspiration from the crystal lattices – “the interfaces are where things get interesting,” according to one researcher – the building fosters a fluid work flow by laminating predictable lab space with unpredictable offices, meeting rooms and lounges. Every time QMI users enter or leave a floor, they are momentarily taken out of their routine as they pass through a gathering space that skews and transforms the pragmatic. These gathering spaces are located at the junctures where the QMI and AMPEL meet, becoming platforms for social interaction and the cross-pollination of ideas.

© Martin Tessler
© Martin Tessler
© Martin Tessler
© Martin Tessler

The QMI has been registered with the CAGBC and is pursuing certification at the gold level. The project team’s largest hurdle to overcome was reducing the energy consumption required by laboratory process loads. Key strategies included minimizing the number of air changes in laboratories and implementing a fume hood sash management program.

© Martin Tessler
© Martin Tessler

View the complete gallery

Project location

Location to be used only as a reference. It could indicate city/country but not exact address.
About this office
Cite: "UBC Quantum Matter Institute / PUBLIC Architecture + Communication " 19 Sep 2018. ArchDaily. Accessed . <https://www.archdaily.com/899458/ubc-quantum-matter-institute-public-architecture-plus-communication/> ISSN 0719-8884
© Martin Tessler

UBC量子物质研究所 / PUBLIC Architecture + Communication

You've started following your first account!

Did you know?

You'll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.