1. ArchDaily
  2. robotics

robotics: The Latest Architecture and News

Makr Shakr Opens Robotic Bars in Milan and London

Bar producer Makr Shakr has unveiled new rooftop robotic bars in Milan and London. Founded by MIT professor Carlo Ratti, the company's new projects are made to engage with the city and explore the potential of technology. In Milan, the project is the city's first robotic bar, while the London bar is on display at the Barbican as part of its AI: More than Human exhibition. Makr Shakr's bars aim to combine barman roots with food tech around the future of human-machine collaboration.

Makr Shakr Opens Robotic Bars in Milan and London - Image 1 of 4Makr Shakr Opens Robotic Bars in Milan and London - Image 2 of 4Makr Shakr Opens Robotic Bars in Milan and London - Image 3 of 4Makr Shakr Opens Robotic Bars in Milan and London - Image 4 of 4Makr Shakr Opens Robotic Bars in Milan and London - More Images+ 1

Robots will Construct Melike Altınışık' Robot Museum in Seoul

Robots will Construct Melike Altınışık' Robot Museum in Seoul - Image 1 of 4
© Melike Altınışık Architects

Turkish practice Melike Altınışık Architects (MAA) has won an international competition for the design of a Robot Science Museum in Seoul, South Korea. Hosted by the Seoul Metropolitan Government, the competition called for a “world first” museum to support public education in robotics, and increase public interest in robots.

The principles of robotics, science, technology, and innovation have shaped all aspects of the scheme’s design, from form and structure to material and operation. The main character of the museum is to “create its own universe for robots and their visitors,” manifesting as a non-directional, fluid, spherical structure.

Robots will Construct Melike Altınışık' Robot Museum in Seoul - Featured ImageRobots will Construct Melike Altınışık' Robot Museum in Seoul - Image 1 of 4Robots will Construct Melike Altınışık' Robot Museum in Seoul - Image 2 of 4Robots will Construct Melike Altınışık' Robot Museum in Seoul - Image 3 of 4Robots will Construct Melike Altınışık' Robot Museum in Seoul - More Images+ 4

The Trends that Will Influence Architecture in 2019

It is, once again, the time of year where we look towards the future to define the goals and approaches that we will take for our careers throughout the upcoming year. To help the millions of architects who visit ArchDaily every day from all over the world, we compiled a list of the most popular ideas of 2018, which will continue to be developed and consolidated throughout 2019.

Over 130 million users discovered new references, materials, and tools in 2018 alone, infusing their practice of architecture with the means to improve the quality of life for our cities and built spaces. As users demonstrated certain affinities and/or demonstrated greater interest in particular topics, these emerged as trends. 

Bionic Construction Workers Coming in 2020

American robotics company Sarcos has revealed a new full-body exoskeleton for construction workers that aims to be commercially available in 2020. While the US manufacturer specializes in military and public safety devices, the new robotic exoskeleton allows workers to carry up to 200 pounds for extended periods of time. Called the Guardian XO, the design has been in development for nearly two decades and is made to help reduce strain on construction workers.

Bionic Construction Workers Coming in 2020 - Image 1 of 4Bionic Construction Workers Coming in 2020 - Image 2 of 4Bionic Construction Workers Coming in 2020 - Image 3 of 4Bionic Construction Workers Coming in 2020 - Featured ImageBionic Construction Workers Coming in 2020 - More Images

Aarhus School of Architecture's Revolutionary Robotic Formwork Method Cuts Concrete Use by 70%

The Aarhus School of Architecture working with Asbjørn Søndergaard of Odico Formwork Robotics, has unveiled a high-performance structure deployed using a revolutionary robotic manufacturing method. “Experiment R” seeks to disrupt current concrete manufacturing by cutting the cost of concrete formwork production by 50%.

The abrasive wire-cutting method can accelerate the production time of conventional formwork by a factor of 126, while reducing the amount of concrete used by up to 70%. Despite these impressive stats, the technology has been developed to preserve and enhance design freedom.

Aarhus School of Architecture's Revolutionary Robotic Formwork Method Cuts Concrete Use by 70% - Image 1 of 4Aarhus School of Architecture's Revolutionary Robotic Formwork Method Cuts Concrete Use by 70% - Image 2 of 4Aarhus School of Architecture's Revolutionary Robotic Formwork Method Cuts Concrete Use by 70% - Image 3 of 4Aarhus School of Architecture's Revolutionary Robotic Formwork Method Cuts Concrete Use by 70% - Image 4 of 4Aarhus School of Architecture's Revolutionary Robotic Formwork Method Cuts Concrete Use by 70% - More Images+ 9

MIT Team Working with Neri Oxman Design "Fiberbots" to Respond Quickly to Natural Disaster

The MIT-based Mediated Matter Group have created Fiberbots, an autonomous digital fabrication platform designed to quickly build architecture during disaster. By utilizing cooperative robotic manufacturing, Fiberbots can create highly sophisticated material structures. The small robots work as a group to wind fiberglass filament and create high-strength tubular structures. MIT researchers envision the bots building in extreme environments and natural disaster zones.

MIT Team Working with Neri Oxman Design "Fiberbots" to Respond Quickly to Natural Disaster - Image 1 of 4MIT Team Working with Neri Oxman Design "Fiberbots" to Respond Quickly to Natural Disaster - Image 2 of 4MIT Team Working with Neri Oxman Design "Fiberbots" to Respond Quickly to Natural Disaster - Image 3 of 4MIT Team Working with Neri Oxman Design "Fiberbots" to Respond Quickly to Natural Disaster - Featured ImageMIT Team Working with Neri Oxman Design Fiberbots to Respond Quickly to Natural Disaster - More Images+ 10

Robotics Start-up Proposes Smart, Motorized Ceiling Furniture

“Architects don’t even look at it as an opportunity to put any living experience there…we can open that up” muses Sankarshan Murthy, former Tesla and Apple Watch engineer.

As humans inhabit ever-tighter living arrangements, Murthy’s start-up “Bumblebee Spaces” takes a novel approach: put everything in the ceiling.

ROB|ARCH 2018: Robotic Fabrication in Architecture, Art, and Design

The advent of robotics in the creative and construction industries has led to an amazing revolution, changing not just how things are designed and made, but also transforming knowledge cultures, politics and economics that surround them. As such, the ROB|ARCH 2018 conference – hosted by the NCCR Digital Fabrication and ETH Zurich – will continue this path, developing and revealing novel insights, applications and impacts of this transformation within the scientific, creative, and entrepreneurial domains, including, for example, architecture, structural design, civil and process engineering, art and design, and robotics. A particular focus lies upon cross-disciplinary approaches and applications, providing state-of-the-art knowledge, techniques and methods of robotics not just in individual areas of exploration, but also beyond. These ideals aspire to complement the transformation processes of emerging robotic research and applications, and to redefine cross-disciplinary work in an era of global digitalisation and knowledge transfer. Key topics and issues of ROB|ARCH 2018 include autonomous control systems, advanced construction, collaborative design tools, computerised materials and structures, adaptive sensing and actuation, on-site and cooperative robotics, machine-learning, human-machine interaction, large-scale robotic fabrication and networked workflows.

Harvard GSD Student Envisions Autonomous Building that Rearranges Spaces Throughout the Day

As self-driven cars are being introduced to our city streets and tech companies have expanded their influence far beyond the boundaries of our computer and smartphone displays, a new generation of architects are charged with imagining how to employ the technology of tomorrow in ways that will advance and improve the world’s built environments. With autonomous transportation, virtual and augmented reality and artificial intelligence promising unprecedented tools for revolutionizing human infrastructure in a future that no longer feels particularly distant, present-day data gathering and analysis capabilities have already transformed our ability to understand trends on an unforeseen scale.

Taking full advantage of modern data science capabilities and semi-automated robotic technology currently deployed in factory settings around the world, Masters candidate Stanislas Chaillou from the Harvard GSD imagines how today’s new tech could help realize the longtime architectural ambition of creating flexible buildings capable of adapting to variable uses.

Carlo Ratti's Writing Robot Transforms Your Wall into an Artistic Canvas

Carlo Ratti Associati (CRA) has unveiled Scribit, a “writing robot” which draws images and text on any wall surface, turning office, living, and bathroom walls into a blank canvas for artistic expression. Using in-built engines, Scribit can draw, cancel, and re-draw new content an infinite number of times, allowing users to print different images, messages, or feeds every day.

Scribit is always connected to the internet, allowing users to download, upload or source any online content. Operating in real time, Scribit immediately reproduces any data sent to it by the user, be it a restaurant posting the day’s menu, a financial firm posting stock market updates in its lobby, or an art enthusiast projecting their own content on the living room wall.

 Carlo Ratti's Writing Robot Transforms Your Wall into an Artistic Canvas - Image 1 of 4 Carlo Ratti's Writing Robot Transforms Your Wall into an Artistic Canvas - Image 2 of 4 Carlo Ratti's Writing Robot Transforms Your Wall into an Artistic Canvas - Image 3 of 4 Carlo Ratti's Writing Robot Transforms Your Wall into an Artistic Canvas - Image 4 of 4 Carlo Ratti's Writing Robot Transforms Your Wall into an Artistic Canvas - More Images+ 3

Local Computations

This issue of dearq seeks to shed light on a spectrum of spatial, material, and research practices intertwining architecture, design, and computation. We welcome contributions that address these from critical, de-colonial, and local perspectives, with a non-exclusive focus on Latin America and the rest of the “Global South”.

Recent debates on the role of computation in architectural practice and education tend to be framed within theoretical armatures that originate in the global centers of knowledge and economy. Likewise, dominant discourses on computation in architecture and design often normalize technologies
as autonomous forces that trigger inextricable historical ‘turns.’ It is thus tempting, but

Towards a Robotic Architecture

The field of robotics is coming of age. Robotics and artificial intelligence represent the next cutting edge technology to transform the fields of architecture and design. The past decade's surge towards more computationally defined building systems and highly adaptable open-source design software has left the field ripe for the integration of robotics wither through large-scale building fabrication or through more intelligent/adaptive building systems. Through this surge, architecture has not only been greatly influenced by these emerging technologies, but has also begun influencing other disciplines in unexpected ways. The purpose of this book is to provide systems of classification, categorization and

Will Automation Affect Architects?

According to The Economist, 47% of the work done by humans will have been replaced by robots by 2037, even those traditionally associated with university education. While the World Economic Forum estimates that between 2015 and 2020, 7.1 million jobs will be lost around the world, as "artificial intelligence, robotics, nanotechnology and other socio-economic factors replace the need for human employees."

It's not science fiction: the MIT Technology Review warns that the current debate over raising the minimum wage for fast food employees in the United States would accelerate their own automation. On the other hand, Silicon Valley personalities and millionaires like Elon Musk and Richard Branson warned that the impact of automation will force the creation of a universal basic income to compensate not only the massive unemployment that would generate these new technologies but also the hyper-concentration of the global wealth.

One advocate of this idea is the British economist Guy Standing who wrote at the Davos Forum that it "would be a sensible precaution against the possibility of mass displacement by robotization and artificial intelligence," but will automation affect architects? Will we really be replaced by robots?

5 Passive Cooling Alternatives Using Robotics and Smart Materials

The IAAC (Institute for Advanced Architecture of Catalonia) has developed a series of advanced materials and systems for air conditioning and passive ventilation, allowing homes to reduce interior temperatures up to 5 degrees lower while saving the electricity consumption caused by the traditional air-conditioning. The systems are made from long-lifespan materials, which lower the costs of maintenance in the long-term and can be used as low-cost alternative building technologies.

The projects highlighted are the Breathing Skin, Hydroceramics, Hydromembrane, Morphluid and Soft Robotics - all developed by students of the IAAC's Digital Matter Intelligent Constructions (conducted by Areti Markopoulou). The passive air-conditioning of spaces is investigated using a combination of new materials that mimic organic processes, adaptive structures and Robotics that help regulate temperature and create sustainable micro climates.

This Complex Concrete Column Was Made Using 3D-Printed Formwork

While large-scale 3D printing for architecture continues to be a busy area of research, France-based company XtreeE has been using 3D printed concrete in projects since 2015. Their latest creation is an organic truss-style support structure for a preschool playground in Aix-en-Provence.

This Complex Concrete Column Was Made Using 3D-Printed Formwork - Image 1 of 4This Complex Concrete Column Was Made Using 3D-Printed Formwork - Image 2 of 4This Complex Concrete Column Was Made Using 3D-Printed Formwork - Image 3 of 4This Complex Concrete Column Was Made Using 3D-Printed Formwork - Image 4 of 4This Complex Concrete Column Was Made Using 3D-Printed Formwork - More Images+ 6

Why Wolf Prix Is Pushing For New Methods of Robotic Construction

This article was originally published on Autodesk's Redshift publication as "Wolf Prix on Robotic Construction and the Safe Side of Adventurous Architecture."

In response to a conservative and sometimes fragmented building industry, some architects believe that improving and automating the construction process calls for a two-front war: first, using experimental materials and components, and second, assembling them in experimental ways. Extra-innovative examples include self-directed insect-like robots that huddle together to form the shape of a building and materials that snap into place in response to temperature or kinetic energy.

The automation battle has already been fought (and won) in other industries. With whirring gears and hissing pneumatics, rows and rows of Ford-ist mechanical robot arms make cars, aircraft, and submarines in a cascade of soldering sparks. So why shouldn’t robotic construction become commonplace for buildings, too?

This Brick-Laying Robot Can Construct an Entire House in Just 2 Days

Thanks to a new robot named Hadrian X, we made soon be able to construct an entire brick house in just 2 days. Developed by the appropriately named Australian firm Fastbrick Robotics, the giant truck-mounted robot has the ability to lay up to 1,000 bricks an hour. Its innovation comes via the machine’s 30-meter telescopic boom, which allows the base to remain in a single position throughout the brick-laying process.

New Autodesk System Streamlines 3D Printing of Large, Complex Objects

A team of engineers at Autodesk have been pushing the limitations of conventional 3D printing -- not by redesigning the machines themselves, but by creating a network to harness their collective power. Autodesk's "Project Escher" is a new printing system that utilizes the power of several 3D printers at once to fabricate complex parts in unison, reports FastCoDesign. The new system can increase production speed by up to 90%.